Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Variation of hydrogen-bonded networks in hexafluorophosphate salts of amidate-bridged dirhodium(II,III) complexes with axial aqua ligands

Masahiro Ebihara* and Yasuhiro Fuma

Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
Correspondence e-mail: ebihara@apchem.gifu-u.ac.jp

Received 5 April 2006
Accepted 18 May 2006
Online 15 June 2006
In diaquatetra- μ-acetamidato- $\kappa^{4} N: O ; \kappa^{4} O: N$-dirhodium(II,III) hexafluorophosphate, $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6}$, and dia-quatetra- μ-acetamidato- $\kappa^{4} N: O ; \kappa^{4} O: N$-dirhodium(II,III)hexafluorophosphate dihydrate, $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6}$-$2 \mathrm{H}_{2} \mathrm{O}$, the cations and anions lie on inversion centers. Diaquatetra- μ-propionamidato- $\kappa^{4} N: O ; \kappa^{4} O: N$-dirhodium(II,III) hexafluorophosphate dihydrate, $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6}$.$2 \mathrm{H}_{2} \mathrm{O}$, and diaquatetra- μ-butyramidato- $\kappa^{4} \mathrm{~N}: \mathrm{O} ; \kappa^{4} \mathrm{O}: \mathrm{N}$-dirhodium(II,III) hexafluorophosphate, $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ PF_{6}, crystallize with two crystallographically independent complexes that lie on inversion centers. In all of the structures, the dirhodium units are hydrogen bonded to one another. The hydrogen-bonded networks vary with the alkyl substituents.

Comment

Amidate-bridged paddlewheel complexes are useful modules in building assembled structures because they have hydrogendonating NH groups and hydrogen-accepting O -atom sites in addition to the axial coordination sites. We have studied assembled complexes of acetamidate-bridged paddlewheel dirhodium complexes with halide linkers, namely one-dimensional chain structures of $\left[\mathrm{Rh}_{2}(\text { acam })_{4}(\mu-X)\right] \cdot n \mathrm{H}_{2} \mathrm{O}$ (Hacam is acetamide; $X=\mathrm{Cl}, \mathrm{Br}$ and $\mathrm{I} ; n=0,2,3$ and 7 ; Yang et al., 2000, 2001), a two-dimensional honeycomb structure of $\left[\left\{\mathrm{Rh}_{2^{-}}\right.\right.$ (acam) $\left.\left.)_{4}\right\}_{3}\left(\mu_{3}-\mathrm{Cl}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Takazaki et al., 2003) and a threedimensional diamondoid structure of $\left[\left\{\mathrm{Rh}_{2}(\mathrm{acam})_{4}\right\}_{2}\left(\mu_{4}-\mathrm{I}\right)\right]$-$6 \mathrm{H}_{2} \mathrm{O}$ (Fuma et al., 2004). In all these structures, direct hydrogen bonds between the NH groups and O atoms of the amidate ligands play an important role. In the hydrates, hydrogen bonds between the amidate ligands and water molecules affect the physical properties (Fuma et al., 2004). We have also reported anionic chain structures of the dirhodium complexes with tetrachloroplatinate and tetrachloropalladate linkers, viz. $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{Rh}_{2}(\text { acam })_{4}\right.$ -$\left.\left(\mu-\mathrm{MCl}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(M=\mathrm{Pd}$ and Pt ; Yang et al., 2006). In these
structures, the cationic $\left[\mathrm{Rh}_{2}(\operatorname{acam})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$complex participates in hydrogen-bonded networks using the bridging

amidate and axial aqua ligands. In this paper, we report a variation of hydrogen-bonded networks in the hexafluorophosphate salts of amidate-bridged dirhodium complexes, $\left[\mathrm{Rh}_{2}(\text { acam })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6}$, (I), $\left[\mathrm{Rh}_{2}(\text { acam })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (II), $\left[\mathrm{Rh}_{2}(\text { pram })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Hpram is propionamide), (III), and $\left[\mathrm{Rh}_{2}(\text { buam })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6}$ (Hbuam is butyramide), (IV).

The structure of (I) is shown in Fig. 1. Compound (I) is isostructural with $\left[\mathrm{Rh}_{2}(\operatorname{acam})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{ClO}_{4}$ (Baranovskii et al., 1986). The dirhodium complex lies around an inversion center at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. The hexafluorophosphate ion lies on another inversion center at $\left(\frac{1}{2}, 0,0\right)$. The complex is the so-called $(2,2)$ cis isomer, in which each Rh atom is coordinated by two cis N and two cis O atoms (Table 1). The complexes form a hydrogen-bonded chain along the b axis, with the axial aqua ligand (O 3) donating a H atom to one of the amidate O atoms

Figure 1
The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[$\mathrm{O} 2^{\text {iii }}$; symmetry code: (ii) $\left.x, y-1, z\right]$ (Table 2 and Fig. 2). The complexes also form hydrogen bonds between amidate atom N 2 and amidate atom $\mathrm{O} 1^{\text {iii }}$ [symmetry code: (iii) $x+1, y, z$]. These hydrogen bonds connect the complexes two-dimensionally in the $a b$ plane. The hexafluorophosphate ion is also hydrogen bonded via the amidate (N1) and axial aqua ligands, and these connect the hydrogen-bonded sheets three-dimensionally. In this structure, all the N and O atoms are included in the hydrogen-bonded network.

In the structure of (II) (Fig. 3 and Table 3), there is one independent complex on an inversion center at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ that has an equivalent site $\left(\frac{1}{2}, 0,0\right)$. The hexafluorophosphate ion lies on another inversion center at $\left(0, \frac{1}{2}, 0\right)$ that has an equivalent site $\left(0,0, \frac{1}{2}\right)$. The water molecule lies on a general position. The crystal structure is shown in Fig. 4. In compound (II), two aqua ligands, two amidate N atoms and four amidate O atoms are used for direct hydrogen bonding between the complexes (Table 4), as also seen in (I), but the network structure is

Figure 2
The crystal structure of (I). For clarity, H atoms of methyl groups have been omitted. Hydrogen bonds between the rhodium complexes are drawn as thin lines and the other hydrogen bonds are drawn as dashed lines. [Symmetry codes: (ii) $x, y-1, z$; (iii) $x+1, y, z$.]

Figure 3
The molecular structure of (II), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
different from that in (I). The complex donates a H atom of the axial aqua ligand (O3) to amidate atom $\mathrm{O} 2^{\mathrm{ii}}$ [symmetry code: (ii) $\left.-x+1, y+\frac{1}{2},-z+\frac{3}{2}\right]$. The complex also donates the

Figure 4
The crystal structure of (II). For clarity, methyl H atoms have been omitted. Hydrogen bonds between the rhodium complexes are drawn as thin lines and the other hydrogen bonds are drawn as dashed lines. [Symmetry codes: (ii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (iii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (iv) $-x+1$, $y-\frac{1}{2},-z+\frac{3}{2}$.]

Figure 5
The molecular structure of (III), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The minor disorder components are shown with dashed lines.
amine H atom of atom N 2 to amidate atom $\mathrm{O} 1^{\mathrm{ii}}$. The resulting two-dimensional sheet structure is extended in the $b c$ plane. The aqua ligand (O3) and amide atom N 1 also hydrogen bond to water molecules [O4 and O4 ${ }^{\text {iiii }}$; symmetry code: (iii) $x,-y+\frac{3}{2}$, $\left.z+\frac{1}{2}\right]$. Water molecule O 4 donates H atoms to atoms F 1 and $\mathrm{F} 1^{\mathrm{iii}}$ of the hexafluorophosphate ions. The water molecule and the hexafluorophosphate ion then connect the hydrogenbonded sheets.

The structure of (III) is shown in Fig. 5 and selected bond lengths are given in Table 5. In the unit cell there are two independent dirhodium complexes that lie around inversion centers at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and $\left(0, \frac{1}{2}, 0\right)$. Two independent water molecules are also included. The hydrogen-bonded network in (III) is shown in Fig. 6. There is only one hydrogen bond that directly connects the complexes in (III); aqua ligand O6 hydrogen bonds to amidate atom $\mathrm{O} 2^{\mathrm{i}}$ [symmetry code: (i) $-x$, $-y+1,-z]$. The resulting one-dimensional hydrogen-bonded chain extends in the [111] direction. The water molecules connect the chains two-dimensionally. One water molecule (O7) acts as a hydrogen-bond donor to atom O4 ${ }^{\text {ii }}$ [symmetry code: (ii) $-x+1,-y+1,-z+1]$ and accepts hydrogen bonds from $\mathrm{N} 2^{\mathrm{iii}}$ and $\mathrm{O} 5^{\mathrm{iii}}$ [symmetry code: (iii) $-x+1,-y+1,-z$]. The other water molecule (O8) acts as a donor to atom $\mathrm{O} 1^{\mathrm{v}}$ [symmetry code: (v) $x+1, y, z$] and an acceptor from atoms O5 and O6. Hydrogen bonds also exist to the F atoms of the hexafluorophosphate ion (Table 6).

Figure 6
The crystal structure of (III). For clarity, the minor components of the disordered atoms and ethyl H atoms have been omitted. Hydrogen bonds between the rhodium complexes are drawn as thin lines and the other hydrogen bonds are drawn as dashed lines. [Symmetry codes: (i) $-x$, $-y+1,-z$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+1,-y+1,-z$; (v) $x+1, y$, $z ;(\mathrm{vi}) x-1, y+1, z$.

The structure of (IV) is shown in Fig. 7 and selected bond lengths are given in Table 7. Compound (IV) also has two independent dirhodium complexes in the unit cell. One

Figure 7
The molecular structure of (IV), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The minor disorder components are shown with dashed lines.

Figure 8
The crystal structure of (IV). For clarity, the minor components of the disordered atoms and propyl H atoms have been omitted. Hydrogen bonds between the rhodium complexes are drawn as thin lines and the other hydrogen bonds are drawn as dashed lines. [Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x+1,-y+1,-z+1$; (iii) $x, y-1, z$; (iv) $x, y+1$, z.]
complex lies on an inversion center at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and the other on another inversion center at $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$. The two independent complexes are hydrogen bonded to each other (Table 8 and Fig. 8). Axial aqua ligands of both complexes act as donors to the O atoms of neighboring complexes [O5 to $\mathrm{O} 4^{\mathrm{ii}}$ and O 6 to $\mathrm{O} 2^{\mathrm{i}}$; symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x+1,-y+1$, $-z+1]$. Amidate atom N3 acts as a donor to amidate atom $\mathrm{O}^{1}{ }^{\mathrm{i}}$. These hydrogen bonds connect the complexes into a onedimensional chain in the c direction. The hexafluorophosphate ion accepts hydrogen bonds from atoms N 4 and O 6 and from $\mathrm{N} 1^{\text {iv }}$ and $\mathrm{O} 5^{\text {iv }}$ [symmetry code: (iv) $x, y+1, z$]. The anion thus connects the chains two-dimensionally.

Experimental

$\left[\mathrm{Rh}_{2}(\text { acam })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was synthesized according to a published method (Doyle et al., 1990). Compounds (I) and (II) were prepared by a modification of the method of Baranovskii et al. (1986) for preparing $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{ClO}_{4}$. To an aqueous solution (50 ml) of $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.751 \mathrm{~g}, 1.29 \mathrm{mmol})$ at $353 \mathrm{~K}, \mathrm{Ag}_{2} \mathrm{SO}_{4}$ $(0.200 \mathrm{~g}, 0.64 \mathrm{mmol})$ was added and the mixture was stirred for 10 min . The solution was cooled to 273 K and the precipitate was filtered off. $\mathrm{NH}_{4} \mathrm{PF}_{6}(10.1 \mathrm{~g}, 62.1 \mathrm{mmol})$ was added to the brown filtrate and left for 20 h to give brown crystals of (II) (yield 0.612 g , 72%). The crystals gradually lost their water of crystallization. Crystals of (I) were obtained by slow evaporation of an aqueous solution of (II). Analysis calculated for $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{PRh}_{2}$: C 15.52, H 3.26, N 9.05%; found: C 15.42, H 3.12, N 8.74%. Compound (III) was prepared in a similar manner to (II). $\left[\mathrm{Rh}_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]$ $(0.515 \mathrm{~g}, 1.02 \mathrm{mmol})$ was heated at 363 K for 1 h under reduced pressure. An excess of propionamide ($3.60 \mathrm{~g}, 49.3 \mathrm{mmol}$) and toluene $(76 \mathrm{ml})$ were added. The suspension was refluxed for 7 d under an argon atmosphere using a Soxhlet extractor in which the extraction thimble contained sodium carbonate and molecular sieves ($3 \AA$). The resulting blue-purple solution was distilled to remove the solvent and amide. The residual amide was sublimed from the resulting bluepurple powder. An aqueous solution $(60 \mathrm{ml})$ of $\mathrm{Ag}_{2} \mathrm{SO}_{4}(0.16 \mathrm{~g}$, 0.51 mmol) was added and the mixture was stirred for 12 h at 323 K . The gray precipitate was filtered off and $\mathrm{NH}_{4} \mathrm{PF}_{6}(10.5 \mathrm{~g}, 64.5 \mathrm{mmol})$ was added. After the solution had been left to stand for several days, X-ray quality crystals of (III) were obtained (yield $0.318 \mathrm{~g}, 44 \%$). Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{PRh}_{2}$: C 20.27, H 4.54, N 7.88%; found: C $20.05, \mathrm{H} 4.25, \mathrm{~N} 7.77 \%$. Compound (IV) was also prepared in a similar manner to (II). Starting from $\left[\mathrm{Rh}_{2}\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right] \quad(0.502 \mathrm{~g}, \quad 0.992 \mathrm{mmol})$ and butyramide $(3.35 \mathrm{~g}, 35.2 \mathrm{mmol})$, a brown powder of (IV) was obtained $(0.291 \mathrm{~g}$, 40%). X-ray quality crystals were obtained by slow diffusion of n-hexane into a dichloromethane solution. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{PRh}_{2}$: C 26.28, H 4.96, N 7.66\%; found: C 26.51, H 4.89, N 8.06\%.

Compound (I)

Crystal data

$\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6}$	$V=461.6(4) \AA^{3}$
$M_{r}=619.07$	$Z=1$
Triclinic, $P \overline{1}$	$D_{x}=2.226 \mathrm{Mg} \mathrm{m}^{-3}$
$a=6.631(3) \AA$	Mo $K \alpha$ radiation
$b=7.719(4) \AA$	$\mu=1.97 \mathrm{~mm}^{-1}$
$c=9.645(4) \AA$	$T=118(2) \mathrm{K}$
$\alpha=92.014(5)^{\circ}$	Platelet, brown
$\beta=92.205(5)^{\circ}$	$0.10 \times 0.10 \times 0.03 \mathrm{~mm}$
$\gamma=110.471(7)^{\circ}$	

Data collection
Rigaku/MSC Mercury CCD diffractometer
ω scans
Absorption correction: integration (NUMABS; Higashi, 1999) $T_{\text {min }}=0.751, T_{\text {max }}=0.940$

3818 measured reflections 2096 independent reflections
1903 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.058$
$S=1.04$
2096 reflections
133 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0246 P)^{2}\right. \\
& +0.4628 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.48 \mathrm{e}^{\circ}{ }^{-3} \\
& \Delta \rho_{\min }=-0.64 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0080 \text { (14) }
\end{aligned}
$$

Table 1
Selected bond lengths (Å) for (I).

Rh1-Rh1 ${ }^{1}$	$2.4084(10)$	Rh1-O3	$2.284(2)$
Rh1- O1 ${ }^{\mathrm{i}}$	$2.028(2)$	Rh1-N1	$1.982(3)$
Rh1-O2		$2.040(2)$	Rh1-N2

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 4 \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.80(4)$	$1.97(4)$	$2.760(3)$	$170(4)$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{~F} 1$	$0.75(4)$	$2.20(4)$	$2.922(3)$	$162(4)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~F} 1$	0.88	2.35	$3.064(3)$	138
N1-H1 F 3	0.88	2.44	$3.284(3)$	162
N2-H2 \cdots O $^{\text {iii }}$	0.88	2.21	$3.022(3)$	154

Symmetry codes: (ii) $x, y-1, z$; (iii) $x+1, y, z$.

Compound (II)

Crystal data

$\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$Z=2$
$M_{r}=655.10$
Monoclinic, $P 2_{1} / c$
$a=11.6918$ (17) A
$b=11.5727$ (13) \AA
$c=7.9774$ (13) \AA
$\beta=110.506$ (6) ${ }^{\circ}$
$V=1011.0(3) \AA^{3}$
Data collection
Rigaku/MSC Mercury CCD
diffractometer
ω scans
Absorption correction: integration (NUMABS; Higashi, 1999)
$T_{\text {min }}=0.712, T_{\text {max }}=0.828$
$D_{x}=2.152 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.81 \mathrm{~mm}^{-1}$
$T=118$ (2) K
Block, brown
$0.30 \times 0.30 \times 0.15 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.056$
$S=1.17$
2308 reflections
151 parameters
H atoms treated by a mixture of independent and constrained refinement

7888 measured reflections 2308 independent reflections 2208 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0199 P)^{2}\right. \\
& \quad+1.4706 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.00 \\
& \Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.60 \mathrm{e}^{-3}
\end{aligned}
$$

Table 3
Selected bond lengths (Å) for (II).

Rh1-Rh1 ${ }^{\text {i }}$	$2.4015(4)$	Rh1-O3	$2.2407(19)$
Rh1-O1 ${ }^{\text {i }}$	$2.0301(17)$	Rh1-N1	$1.980(2)$
Rh1-O2	$2.0419(18)$	Rh1-N2	$1.973(2)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Table 4
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {ii }}$	0.93 (4)	1.86 (4)	2.775 (3)	168 (3)
$\mathrm{O} 3-\mathrm{H} 4 \cdots \mathrm{O}$	0.78 (4)	2.00 (4)	2.774 (3)	173 (4)
O4-H11 \cdots F1	0.72 (5)	2.22 (6)	2.938 (4)	170 (5)
O4-H12 \cdots F1 ${ }^{\text {iii }}$	0.80 (6)	2.18 (6)	2.922 (3)	156 (5)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 4^{\text {iii }}$	0.88	2.44	3.213 (3)	146
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {ii }}$	0.88	2.27	3.073 (3)	152
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3^{\text {iii }}$	0.88	2.59	3.192 (3)	126

Symmetry codes: (ii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (iii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$.

Compound (III)

Crystal data

$\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$Z=2$
$M_{r}=711.21$	$D_{x}=1.879 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo K α radiation
$a=8.980(2) \AA$	$\mu=1.46 \mathrm{~mm}^{-1}$
$b=11.866(3) \AA$	$T=118(2) \mathrm{K}$
$c=12.682(4) \AA$	Prism, brown
$\alpha=87.696(10)^{\circ}$	$0.30 \times 0.10 \times 0.10 \mathrm{~mm}$
$\beta=85.095(8)^{\circ}$	
$\gamma=69.032(6)^{\circ}$	
$V=1257.2(6) \AA^{\circ}$	

Data collection

Rigaku/MSC Mercury CCD diffractometer
ω scans
Absorption correction: integration (NUMABS; Higashi, 1999)
$T_{\text {min }}=0.619, T_{\text {max }}=0.773$

10284 measured reflections 5685 independent reflections
5122 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /[\\
& \quad \sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0334 P)^{2} \\
& \quad1.000 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.66 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.76 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0026
\end{aligned} .(5)
\end{aligned}
$$

Table 6
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (III).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 6 \cdots \mathrm{O} 7^{\text {iii }}$	0.82 (4)	1.91 (4)	2.706 (3)	164 (3)
O5-H5 . O 8	0.86 (4)	1.89 (4)	2.755 (3)	176 (3)
$\mathrm{O} 6-\mathrm{H} 7 \cdots \mathrm{O} 2^{\text {i }}$	0.76 (4)	2.04 (4)	2.789 (3)	168 (4)
O6-H8 . O 8	0.81 (4)	1.90 (4)	2.711 (3)	173 (4)
$\mathrm{O} 7-\mathrm{H} 10 \cdots \mathrm{O} 4^{\text {ii }}$	0.72 (4)	2.07 (4)	2.775 (3)	163 (4)
$\mathrm{O} 7-\mathrm{H} 9 \cdots \mathrm{~F}^{\text {iv }}$	0.84 (4)	2.07 (4)	2.879 (3)	164 (3)
$\mathrm{O} 8-\mathrm{H} 11 \cdots \mathrm{O}^{\text {v }}$	0.77 (4)	1.97 (4)	2.729 (3)	168 (4)
O8-H12 \cdots F1	0.80 (4)	2.05 (4)	2.845 (3)	173 (3)
N1-H1 \cdots F3	0.88	2.28	3.123 (3)	161
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 7^{\text {iii }}$	0.88	2.14	2.963 (3)	155
N4-H4 . .F4	0.88	2.26	3.120 (3)	168

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+1,-y+1$,
$-z ;$ (iv) $x+1, y-1, z ;(\mathrm{v}) x+1, y, z$.

Compound (IV)

Crystal data

$\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6}$
$Z=2$
$M_{r}=731.28$
Triclinic, $P \overline{1}$
$D_{x}=1.831 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$a=9.1037$ (4) \AA
$b=11.0653$ (1) \AA
$c=14.0104$ (5) \AA
$\mu=1.38 \mathrm{~mm}^{-1}$
$\alpha=73.667$ (10) ${ }^{\circ}$
$T=173$ (2) K
Needle, brown
$\beta=82.143(10)^{\circ}$
$\gamma=79.486(10)^{\circ}$
$V=1326.18(11) \AA^{3}$
Data collection
Rigaku/MSC Mercury CCD diffractometer
ω scans
Absorption correction: integration
(NUMABS; Higashi, 1999)
$T_{\text {min }}=0.643, T_{\text {max }}=0.960$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.069$
$S=1.17$
10813 measured reflections 6014 independent reflections 5456 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=27.5^{\circ}$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+2.8905 P\right]$
where $P \stackrel{\mathrm{o}}{=}\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.012$ 。
$\Delta \rho_{\text {max }}=0.75 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.71 \mathrm{e} \mathrm{A}^{-3}$

Table 7
Selected bond lengths (\AA) for (IV).

Rh1-Rh1 1^{i}	$2.4026(3)$	$\mathrm{Rh} 2-\mathrm{Rh} 2^{\mathrm{ii}}$	$2.4064(3)$
$\mathrm{Rh} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.0389(10)$	$\mathrm{Rh} 2-\mathrm{O} 3^{\mathrm{ii}}$	$2.0118(11)$
$\mathrm{Rh} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.0314(10)$	$\mathrm{Rh} 2-\mathrm{O} 4^{\mathrm{ii}}$	$2.0268(9)$
$\mathrm{Rh} 1-\mathrm{O} 5$	$2.2608(10)$	$\mathrm{Rh} 2-\mathrm{O} 6$	$2.2844(10)$
Rh1-N1	$1.9706(12)$	$\mathrm{Rh} 2-\mathrm{N} 3$	$1.9843(13)$
Rh1-N2	$1.9735(13)$	$\mathrm{Rh} 2-\mathrm{N} 4$	$1.9845(11)$

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x+1,-y+1,-z+1$.

One ethyl group in (III) was disordered. Atoms C11 and C12 were refined with isotropic displacement parameters over two sites, with the occupancies of the two sets of atoms, A and B, taken as 0.50 . In (IV), one methyl C atom, C16, was refined as disordered over two sites with occupancies of 0.75 and 0.25 . Atoms F3, F4, F5 and F6 in (IV) were refined as disordered over two sites, with the occupancies of the two sets of atoms, A and B, taken as 0.60 and 0.40 , respectively.

Table 8
Hydrogen-bond geometry ($\left({ }^{\circ},^{\circ}\right.$) for (IV).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 4^{\text {ii }}$	0.75 (2)	2.02 (2)	2.7651 (15)	171.5 (16)
O5-H6 \cdots F6 $A^{\text {iii }}$	0.766 (16)	2.277 (19)	2.970 (2)	151.2 (19)
O5-H6 \cdots F6 $B^{\text {iii }}$	0.766 (16)	2.215 (19)	2.902 (4)	149.8 (19)
$\mathrm{O} 5-\mathrm{H} 6 \cdots \mathrm{~F}^{\text {iii }}$	0.766 (16)	2.540 (16)	3.2410 (17)	153.1 (19)
$\mathrm{O} 6-\mathrm{H} 7 \cdots \mathrm{O} 2^{\text {i }}$	0.801 (19)	2.044 (19)	2.8420 (15)	174.5 (15)
O6-H8*F1	0.664 (17)	2.273 (15)	2.8931 (13)	156 (2)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~F} 6 A^{\text {iii }}$	0.88	2.47	3.071 (2)	126
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {i }}$	0.88	2.20	3.0706 (15)	170
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{~F} 3 A$	0.88	2.30	3.077 (2)	148
N4-H4 \cdots F3 B	0.88	2.37	3.095 (4)	140

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x+1,-y+1,-z+1$; (iii) $x, y-1, z$.

H atoms on O atoms were refined freely. All other H atoms were placed in idealized positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.98-0.99 \AA$ and $\mathrm{N}-\mathrm{H}$ distances of $0.88 \AA$.

For all compounds, data collection: CrystalClear (Molecular Structure Corporation \& Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

This work was supported by the Research Foundation for Electrotechnology of Chubu.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3015). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Baranovskii, I. B., Golubnichaya, M. A., Dikareva, L. M., Rotov, A. V., Shchelokov, R. N. \& Porai-Koshits, M. A. (1986). Russ. J. Inorg. Chem. 31, 1652-1656.
Doyle, M. P., Bagheri, V., Wandless, T. J., Harn, N. K., Brinker, D. A., Eagle, C. T. \& Loh, K.-L. (1990). J. Am. Chem. Soc. 112, 1906-1912.

Fuma, Y., Ebihara, M., Kutsumizu, S. \& Kawamura, T. (2004). J. Am. Chem. Soc. 126, 12238-12239.
Higashi, T. (1999). NUMABS. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation \& Rigaku (2001). CrystalClear. Version 1.3. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2004). TEXSAN. Version 2.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Takazaki, Y., Yang, Z., Ebihara, M., Inoue, K. \& Kawamura, T. (2003). Chem. Lett. 32, 120-121.
Yang, Z., Ebihara, M. \& Kawamura, T. (2006). Inorg. Chim. Acta, 359, 24652471.

Yang, Z., Ebihara, M., Kawamura, T., Okubo, T. \& Mitani, T. (2001). Inorg. Chim. Acta, 321, 97-106.
Yang, Z., Fujinami, T., Ebihara, M., Nakajima, K., Kitagawa, H. \& Kawamura, T. (2000). Chem. Lett. pp. 1006-1007.

